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Heat equation

The unique solution of the heat equation ut(x , t) = uxx(x , t),
x ∈ R, t ≥ 0, with the initial condition u(x , 0) = f (x) is given by

u(x , t) =
1

2
√
πt

+∞∫
−∞

e−
(x−s)2

4t f (s) ds, x ∈ R, t ≥ 0.

Mathieu linear differential equation

y ′′(t) +
(

a− 2qcost
)

y(t) = 0.
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Almost periodic functions

We put I = R or I = [0,∞), and f : I → X be continuous
function. Given ε > 0, we call τ > 0 an ε-period for f (·) iff

‖f (t + τ)− f (t)‖ ≤ ε, t ∈ I .

The set constituted of all ε-periods for f (·) is denoted by ϑ(f , ε). It
is said that f (·) is almost periodic, (AP) for short, if for each ε > 0
the set ϑ(f , ε) is relatively dense in I , which means that there
exists r > 0 such that any subinterval of I of length r meets
ϑ(f , ε). The vector space consisting of all almost periodic
functions is denoted by AP(I : X ).
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Almost automorphic functions

Let f : R→ E be continuous. It is said that f (·) is almost
automorphic if for every real sequence (bn) there exist a
subsequence (an) of (bn) and a map g : R→ E such that

lim
n→∞

f (t + an) = g(t) and lim
n→∞

g(t − an) = f (t),

pointwise for t ∈ R.
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Stepanov p-almost periodic functions

Let 1 ≤ p <∞. Then we say that a function f ∈ Lp
loc(R : X ) is

Stepanov p-bounded, Sp-bounded shortly, if

‖f ‖Sp := sup
t∈R

(∫ t+1

t
‖f (s)‖p ds

)1/p

<∞.

A function f ∈ Lp
S(R : X ) is said to be Stepanov p-almost periodic,

(Sp-AP) shortly, if the function f̂ : R→ Lp([0, 1] : X ), defined by

f̂ (t)(s) := f (t + s), t ∈ R, s ∈ [0, 1]

is almost periodic.
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Uniformly recurrent functions, A. Haraux, P. Souplet

We say that the function f (·) is uniformly recurrent if there exists
a strictly increasing sequence (αn) of positive real numbers such
that limn→+∞ αn = +∞ and

lim
n→∞

sup
t∈R
‖f (t + αn)− f (t)‖ = 0.
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Bloch (p, k)-periodic functions

Let I = [0,∞) or I = R, p ≥ 0 and k ∈ R. A bounded continuous
function f : I → E is said to be Bloch (p, k)-periodic, or Bloch
periodic with period p and Bloch wave vector or Floquet exponent
k if

f (x + p) = e ikpf (x), x ∈ I .

Antiperiodic functions

For the function f : I → E it is said that is antiperiodic if there
exists p > 0 such that f (x + p) = −f (x) for all x ∈ I .
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Semi-Bloch k-periodic functions

For a bounded continuous function f ∈ C(R : E ) is said to be a
semi-Bloch k-periodic if

∀ε > 0 ∃p ≥ 0 ∀m ∈ Z ∀x ∈ R ‖f (x + mp)− e ikpf (x)‖ ≤ ε.

Semi-anti-periodic functions

For a bounded continuous function f : I → E it is said that is
semi-anti-periodic if

∀ε > 0 ∃p > 0 ∀m ∈ Z ∀x ∈ I ‖f (x + mp)− (−1)mf (x)‖ ≤ ε.
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Theorem

Let k ∈ R and f : I → E is bounded continuous function. Then
the following holds:

i) f (·) is semi-Bloch k-periodic iff e−ik·f (·) is semi-periodic;

ii) f (·) is semi-Bloch k-periodic iff there exists a sequence of
continuous periodic functions (fn), fn : I → E , for all n ∈ N,
such that limn→∞ e ikx fn(x) = f (x) uniformly in I ;

iii) f (·) is semi-Bloch k-periodic iff there exists a sequence of
Bloch k-periodic functions (fn), fn : I → E , for all n ∈ N such
that limn→∞ fn(x) = f (x) uniformly in I .
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Example

The function

f (x) =
∞∑
n=1

e ix/(2n + 1)

n2
, x ∈ R

is semi-anti-periodic because it is uniform limit of
[π · (2n + 1)!!]-anti-periodic functions

fN(x) =
N∑

n=1

e ix/(2n + 1)

n2
, x ∈ R (N ∈ N).
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Let k ∈ R, p > 0 and let f : I → X . Then we have:

i) If f (·) is Bloch (p, k)-periodic (semi-Bloch k-periodic,
semi-anti-periodic), then cf (·) is Bloch (p, k)-periodic
(semi-Bloch k-periodic, semi-anti-periodic) for any c ∈ C;

ii) If X = C, infx∈R |f (x)| = m > 0 an f (·) is Bloch
(p, k)-periodic (semi-Bloch k-periodic, semi-anti-periodic),
then 1/f (·) is Bloch (p,−k)-periodic (semi-Bloch
(−k)-periodic, semi-anti-periodic).

Daniel Velinov Some generalizations of the almost periodic functions



Introduction
Semi-Bloch k-periodic functions
(ω, c)-almost periodic functions

Applications

Example

The solution of the heat equation ut(x , t) = uxx(x , t), x ∈ R,
t ≥ 0, with initial condition u(x , 0) = f (x) is Bloch (p, k)-periodic
(semi-Bloch k-periodic) if the function f (·) is Bloch (p, k)-periodic
(semi-Bloch k-periodic).
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(ω, c)-periodic functions

Let c ∈ C\{0} and ω > 0. A continuous function f : I → E is said
to be (ω, c)-periodic if

f (t + ω) = cf (t), for all t ∈ I .

The number ω is said to be a c-period of f (·). The space of all
(ω, c)-periodic functions f : I → E we be denoted with Pω,c(I : E ).
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(ω, c)-almost periodic functions

Let c ∈ C\{0} and ω > 0. We say that a continuous function
f : I → E is (ω, c)-almost periodic(uniformly recurrent, almost

automorphic) if the function fω,c(t) = c−
t
ω f (t), t ∈ I is almost

periodic (uniformly recurrent, almost automorphic).
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Let ω > 0, c1, ω1 > 0, c2, ω2 > 0, f (·) is (ω1, c1)-almost periodic
and g is (ω2, c2)-almost periodic and both functions are scalar

valued. Set c = c
ω
ω1
1 c

ω
ω2
2 . Then the function fg(·) is (ω, c)-almost

periodic.

Let f : R→ E . The function f (·) is (ω, c)-almost periodic if and
only if the function f̌ (·) = f (−·) is (ω, 1c )-almost periodic function.

Let E = C, c ∈ C\{0}, ω > 0, f : I → C and
infx∈I |f (x)| > m > 0. The following statements hold:

i) If |c | = 1 and f (·) is (ω, c)-almost periodic function, then the
function (1/f )(·) is (ω, 1/c)-almost periodic function.

ii) If |c | ≤ 1, I = [0,∞) and f (·) is (ω, c)-almost periodic then
the function (1/f )(·) is (ω, 1/c)-almost periodic function.
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Theorem 1

Suppose that f : R→ E satisfies the function fω,c(·) is a bounded

almost periodic and c−
·
ωψ(·) ∈ L1(R). Then the function

c−
·
ω (ψ ∗ f ) (·) is bounded uniformly continuous and the function

(ψ ∗ f )(·) is (ω, c)-almost periodic.
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Stepanov p-uniformly recurrent functions

Let 1 ≤ p <∞. A function f ∈ Lp
loc(I : E ) is said to be Stepanov

p-uniformly recurrent if the function f̂ : I → Lp([0, 1] : E ), defined
by f̂ (t)(s) = f (t + s), t ∈ I , s ∈ [0, 1] is uniformly recurrent.

Stepanov (p, ω, c)-almost periodic functions

Let p ∈ [1,∞), c ∈ C\{0} and ω > 0. It is said that a function
f ∈ Lp

loc(I : E ) is Stepanov (p, ω, c)-almost periodic
((p, ω, c)-uniformly recurrent) function if the function

fω,c(t) = c−
t
ω f (t), t ∈ I is Stepanov p-almost periodic (Stepanov

p-uniformly recurrent function).
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Theorem 2

Let I = R or I = [0,∞) and define the function G : I × X → E by

G (t, fω,c(t) = c
− t

ω1
1 F (t, f (t)), where c1 ∈ C\{0} and ω1 > 0,

t ∈ I and x ∈ X . Suppose that the following conditions hold:

i) The function G : I × X → E is Stepanov p-uniformly
recurrent, with p > 1 and there exists a number
r ≥ max(p, p/(p − 1)) and a function LG ∈ Lr

S(I ) such that

‖G (t, x)− G (t, y)‖ ≤ LG (t)‖x − y‖X , t ∈ I , x , y ∈ X .

ii) The function fω,c : I → X is Stepanov p-uniformly recurrent
and there exists a set E ⊆ I with m(E ) = 0 such that
K := {fω,c(t) : t ∈ I\E} is relatively compact in X .
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iii) For every compact set K ⊆ X , there exists a strictly
increasing sequence (αn) of positive real numbers tending to
plus infinity such that

lim
n→+∞

sup
t∈I

sup
u∈K

1∫
0

‖G (t + s + αn, u)− G (t + s, u)‖p ds = 0

and

lim
n→∞

sup
t∈R
‖f̂ω,c(t + αn)− f̂ω,c(t)‖Lp([0,1]:X ) = 0.

Then q := pr
p+r ∈ [1, p) and F (·, f (·)) is Stepanov

(q, ω1, c1)-uniformly recurrent.
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We will examine the invariance of (ω, c)-almost periodic properties
of the infinite convolution product

F (t) =

t∫
−∞

R(t − s)f (s) ds, t ∈ R,

Theorem 3

Suppose that 1 ≤ p <∞, 1/p + 1/q = 1 and (R(t)) ⊆ L(E ,X ) is
a strongly continuous operator family satisfying that

∞∑
k=0

‖e−
·
ω R(·)‖Lq [k,k+1] <∞.

If c−
·
ω f : R→ X is Sp-almost periodic, then the function

F : R→ X given before is well defined and (ω, c)-almost periodic.
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Example 1

The unique solution of the heat equation ut(x , t) = uxx(x , t),
x ∈ R, t ≥ 0, with the initial condition u(x , 0) = f (x) is given by

u(x , t) =
1

2
√
πt

+∞∫
−∞

e−
(x−s)2

4t f (s) ds, x ∈ R, t ≥ 0.

If e−
·
ω e
− ·2

4t0 ∈ L1(R) and f is (ω, c)-uniformly recurrent
((ω, c)-almost periodic) function then by Theorem 1, the solution
x 7→ u(x , t0), x ∈ R is (ω, c)-uniformly recurrent ((ω, c)-almost
periodic).
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Example 2

Let we consider the the following fractional Cauchy inclusion

Dγ
t,+u(t) ∈ Au(t) + f (t), t ∈ R,

where Dγ
t,+ denotes the Riemann-Liouville fractional derivative of

order γ ∈ (0, 1], f : R→ E satisfies certain properties and A is a
closed multivalued linear operator. Assuming certain technical
conditions, using Theorem 3, if c−

·
ω f : R→ X is Sp-almost

periodic, then the solutions of the upper fractional Cauchy
inclusion are (ω, c)-almost periodic.
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Example 3

Let we consider wave equation

uxx(x , t) = utt(x , t), x ∈ R, t ≥ 0

with initial conditions u(x , 0) = f (x), x ∈ R, ut(x , 0) = g(x),
x ∈ R. The solution is given with

u(x , t) =
1

2

(
f (x + t) + f (x − t)

)
+

1

2

x+t∫
x−t

g(s) ds, x ∈ R, t ≥ 0.

Let |c | ≤ 1 and suppose that the function g : [−t0,∞)→ C is
(ω, c)-uniformly recurrent ((ω, c)-almost periodic) function. Then
the solution u(x , t) of the wave equation is (ω, c)-uniformly
recurrent ((ω, c)-almost periodic).
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